Certification Boulevard

Test Your Knowledge of Treatment Technology & Operations Topics

- 1. What type of new effluent filtration process does not contain rock, pebble, sand or anthracite media?
 - a. ABW filters
 - b. Deep bed filters
 - c. Filter press
 - d. Disc filters
- 2. Which on-line instrumentation may provide a closer correlation to an ammonia value in final effluent?
 - a. pH
 - b. D.O.
 - c. ORP
 - d. Alkalinity
- 3. Which statement is most accurate associated with the nitrogen cycle in an activated sludge BNR process:
 - a. Heterotrophic bacteria convert ammonia to nitrite
 - b. Autotrophic bacteria consume CBOD₅ during denitrification
 - c. Alkalinity is recovered during nitrification
 - d. Denitrification reduces the nitrate level
- 4. Which statement is most accurate associated with the biological phosphorus cycle in an activated sludge BNR process:
 - a. Phosphorus is precipitated (settled and removed) in the fermentation zone
 - b. Phosphorus removal is enhanced by chlorinating the aerobic zone
 - c. Phosphorus is released (remains soluble in the MLSS) in the fermentation zone
 - d. Phosphorus is released (turns to gas) in the aerobic zone
- 5. Given the following data, calculate the F/M ratio in an activated sludge process:
 - Influent Flow is 375 gpm
 - Influent CBOD5 is 245 mg/l
 - Aeration Tank is 100 Feet Long 50 Feet Wide and 14 Feet Deep
 - MLSS is 3,750 mg/l
 - MLSS is 71% Volatile
 - a. 0.25
 - b. <u>0.095</u>
 - c. $\overline{10.5}$
 - d. 0.065

F/M Ratio = Lbs/Day Influent $CBOD_5 \div Lbs$ Aeration MLVSS

Lbs/Day Influent CBOD₅ = Flow, mgd x Influent CBOD₅, mg/l x 8.34 lbs/gal

 $(375 \text{ gpm} \div 694 \text{ gpm/mgd}) \times 245 \text{ mg/l} \times 8.34$

1,104 Lbs/Day

Lbs MLVSS Aeration = Aeration Volume, mg x MLVSS, mg/l x 8.34 lbs/gal

 $(100 \text{ Feet x } 50 \text{ Feet x } 14 \text{ Feet x } 7.48 \text{ gal/ft}^3 \div 1,000,000) \text{ x}$

(3,750 mg/l x 0.71) x 8.34 0.5236 mg x 2,662 mg/l x 8.34

11,627 Lbs MLVSS

F/M Ratio = 1,104 Lbs/Day Influent CBOD₅ ÷ 11,627 Lbs Aeration MLVSS

= 0.095

6. Given the following data, calculate the SVI in an activated sludge process:

- Influent Flow is 375 gpm
- Influent CBOD5 is 245 mg/l
- Aeration Tank is 100 Feet Long 50 Feet Wide and 14 Feet Deep
- MLSS is 3,750 mg/l
- MLSS is 71% Volatile
- 30 Minute Settleometer Reading is 400 ml/l
- a. <u>107</u>
- b. 93
- c. 150
- d. 320

SVI = $(30 \text{ Minute Settleometer, ml/l x 1,000}) \div \text{Aeration MLSS, mg/l}$

- = 400 ml/l x 1,000 \div 3,750 mg/l
- = 106.7
- 7. Which type of pump is typically used to supply sludge feed to a belt filter press?
 - a. Centrifugal pump
 - b. Hydraulic diaphragm
 - c. Positive displacement pump
 - d. Gear pump
- 8. In a typical activated sludge process, what adjustment should be made to the air rate if the effluent ammonia value is higher that desired?
 - a. Increase the air rate
 - b. Decrease the air rate
 - c. The air rate has nothing to do with effluent ammonia levels
 - d. Cut the air rate in half

- 9. Given the following conditions, in a plant without effluent TN or NH₃ limitations, which chlorine feed rate adjustment will provide the quickest increase in the effluent chlorine residual?
 - Stable Effluent Flow Volume
 - Increasing Effluent Ammonia Value
 - Chlorine Residual is Lower Than Desired
 - The Location Relative to the Breakpoint Chlorination Curve is to the Right Side of the "Hump"
 - a. Increase the chlorine feed rate
 - b. Decrease the chlorine feed rate
 - c. The chlorine feed rate has nothing to do with effluent chlorine residual
 - d. Double the chlorine feed rate
- 10. An anaerobic digester that has become unstable is referred to as "stuck" or "sour" ... what may cause this condition?
 - a. High acid production
 - b. Low alkalinity in the sludge
 - c. Sludge feed rate too high
 - d. Sludge temperature swings greater than 1°F per day
 - e. Improper mixing
 - f. "a + b + c"
 - g. All of the above